Multi-criteria Ratings for Recommender Systems: An Empirical Analysis in the Tourism Domain
نویسندگان
چکیده
Most recommendation systems require some form of user feedback such as ratings in order to make personalized propositions of items. Typically ratings are unidimensional in the sense of consisting of a scalar value that represents the user’s appreciation for the rated item. Multi-criteria ratings allow users to express more differentiated opinions by allowing separate ratings for different aspects or dimensions of an item. Recent approaches of multi-criteria recommender systems are able to exploit this multifaceted user feedback and make personalized propositions that are more accurate than recommendations based on unidimensional rating data. However, most proposed multi-criteria recommendation algorithms simply exploit the fact that a richer feature space allows building more accurate predictive models without considering the semantics and available domain expertise. This paper contributes on the latter aspects by analyzing multi-criteria ratings from the major etourism platform, TripAdvisor, and structuring raters’ overall satisfaction with the help of a Penalty-Reward Contrast analysis. We identify that several a-priori user segments significantly differ in the way overall satisfaction can be explained by multi-criteria rating dimensions. This finding has implications for practical algorithm development that needs to consider different user segments.
منابع مشابه
Evaluation of recommender systems: A multi-criteria decision making approach
The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...
متن کاملRecommending hotels based on multi-dimensional customer ratings
Recommender Systems (RS) have shown to be a valuable means to support the traveller or tourist in his pre-trip information search and decision making processes. These systems often rely on rating information provided by the user community to make recommendations for individual users. In classical application domains such as movie or book recommendation, users provide one overall rating for each...
متن کاملLeveraging multi-criteria customer feedback for satisfaction analysis and improved recommendations
Travel websites and online booking platforms represent today’s major sources for customers when gathering information before a trip. In particular, community-provided customer reviews and ratings of various tourism services represent a valuable source of information for trip planning. With respect to customer ratings, many modern travel and tourism platforms – in contrast to several other e-com...
متن کاملHybrid Recommender System Based on Variance Item Rating
K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کامل